

Creatinina (Jaffe Cinética) Valtek

Reactivo para la determinación de Creatinina.

INDICACIONES DE USO

Reactivo líquido para la determinación fotométrica de la Creatinina en suero, plasma y orina.

SIGNIFICANCIA CLÍNICA

La Creatinina es un producto de desecho que se forma en el músculo por la degradación de la fosfo-creatina, en cantidad proporcional a la masa y función muscular. La Creatinina es eliminada del organismo por vía renal, siendo retirada del plasma por filtración glomerular. Su medición es útil en el diagnóstico de diversas nefropatías, y su control permanente es de gran utilidad en aquellos pacientes que requieren de diálisis.

DESCRIPCION

La Creatinina, en presencia de picrato alcalino produce un color anaranjado (reacción de Jaffé), que se mide a 505 nm. en cantidad proporcional a su concentración en la muestra.

De preferencia utilizar suero libre de hemolisis o plasma heparinizado.

CONSERVACION

Conservar a una temperatura entre 15°C y 25°C y protegidos de la luz y calor excesivo, son estables hasta la fecha de caducidad indicada en las etiquetas.

PRESENTACIONES

- 1.- Reactivo 1: 1x50ml, reactivo 2: 1x50 ml., en frasco PEAD incoloro, Estándar 1x1.5 ml. En frasco de vidrio neutro ámbar.
- 2.- Reactivo 1: 1x100ml, reactivo 2: 1x100 ml., en frasco PEAD incoloro, Estándar 1x3 ml. En frasco de vidrio neutro ámbar.
- 3.- Reactivo 1: 1x250ml, reactivo 2: 1x250 ml., en frasco PEAD incoloro, Estándar 1x3 ml. En frasco de vidrio neutro ámbar.

FORMULA

Reactivo 1	Medida
Buffer NaOH	500 mM
Describer 0	
Reactivo 2	Medida

Standard	Medida
Estabilizantes no reactivos	C.S

Preparación del Reactivo de Trabajo: Mezclar partes iguales de R1 y R2, preparar la cantidad requerida para el número de determinaciones a realizar. Estabilidad de la solución de trabajo: 1 semana entre 2° y 8°C.

MUESTRA

De preferencia utilizar suero libre de hemólisis o plasma heparinizado. La Creatinina es estable 2 días a temperatura ambiente y una semana entre 2° y 8°C.

MATERIALES NECESARIOS NO SUMINISTRADOS

Espectrofotómetro manual o automático o fotocolorímetro de filtros con cubeta termoestable, capaz de medir absorbancia a 505 nm. (Rango 490-520 nm.), baño termoregulado, cronómetro, pipetas, calibrador y sueros controles.

TÉCNICA

Llevar el reactivo a la temperatura de reacción (30° o 37°C) antes de realizar el ensayo.

		Desconocido	Blanco reactivo
Muestra o Calibrador	(mL)	0.10	
Reactivo trabajo (mL)	1.00	1.00
Agua destilada (mL)		0.10

Mezclar y poner en la celda de lectura, llevando a cero el instrumento con el blanco reactivo A los 20 segundos exactos leer a b s o r b a n c i a inicial (A1). Esperar 60 segundos exactos y leer absorbancia final (A2).

Adaptaciones para la aplicación de este reactivo en autoanalizadores están disponibles a solicitud. Es responsabilidad del laboratorio validar esta aplicación.

CALIBRACIÓN

- En la calibración se recomienda utilizar calibrador sérico VALTROL-C (código8002103), proceder de igual forma que con las muestras.
- Se recomienda recalibrar en cualquier momento que se evidencie alguno de estos acontecimientos:
 - El lote de reactivo cambia.
 - Se realiza un mantenimiento preventivo del equipo.
 - Los valores de control han cambiado o se encuentran fuera de escala.

CÁLCULOS

Determinar el DA/min restando a la absorbancia final (A2) la absorbancia inicial (A1).

Factor =	Concentración Calibrador ΔA/min. Calibrador	
Creatinina (mg	$/dl) = Factor \ x \ \Delta A/min. Muestra$	

CÁLCULO DEL CLEARENCE DE CREATININA

Clearence =	Crea. en orina (mg/dl) x vol. orina 24 h. (ml)
	Creatinina en suero (mg/dl) x 1440

CONTROL DE CALIDAD

- Es conveniente analizar junto con las muestras sueros controles valorados para Creatinina por este método. Se recomienda la utilización de los sueros controles VALTROL-N (código 8002101) y VALTROL-P (código 8002104).
- Si los valores obtenidos para los controles se encuentran fuera del rango de tolerancia, revisar el instrumento, el reactivo y el calibrador.
- Para orinas se recomienda diluir la muestra 1:10 con agua destilada. El resultado se multiplica por 10.
- Cada laboratorio debe disponer de su propio Control de Calidad y establecer las correcciones necesarias en caso de que no se cumpla con las tolerancias permitidas para los controles.

ADVERTENCIAS Y PRECAUCIONES

- Los volúmenes indicados pueden ser alterados proporcionalmente sin alterar los resultados.
- Es fundamental mantener constante la temperatura durante el ensayo cinético, ya que la reacción es muy sensible a los cambios de temperatura.
- Consultar en nuestra página WEB la ficha de seguridad de este reactivo y observar todas las medidas de precaución necesarias para la manipulación y eliminación de residuos.
- En autoanalizadores debe utilizarse contenedores de reactivos nuevos.

ESPECIFICACIONES DE DESEMPEÑO

Linealidad: hasta 20 mg/dl.

Para valores superiores a 20 mg/dl, diluir la muestra con suero fisiológico y el resultado obtenido se multiplica por el factor de dilución.

Límite de detección: 0.1 mg/dl.

Interferencias: No se observó interferencia con la hemoglobina hasta 1g/l y lipemia hasta 2000 mg/dl de triglicéridos. La bilirrubina interfiere a partir de una concentración de 10 mg/dl. En la bibliografía se describen interferentes positivos, entre ellos las proteínas, glucosa, acetoacetato, ácido ascórbico y ácido úrico, e interferentes negativos, y de ellos el más importante es la bilirrubina. Otra interferencia negativa, pero que adquiere más relevancia en neonatología es la hemoglobina de origen fetal (4).

Exactitud: Los reactivos Mexlab VALTEK no muestran diferencias sistemáticas significativas cuando se comparan con otros reactivos comerciales. Los detalles del estudio comparativo están disponibles bajo solicitud.

-Repetividad Intra serie: n = 20.

Nivel	Media (mg/dl)	C.V %
Normal	1.18	0.40%
Patológico	3.58	1.04

-Reproducibilidad Inter serie: n = 20.

Nivel	Media (mg/dl)	C.V %
Normal	1.39	0.96%
Patológico	3.58	1.53%

Estos datos han sido obtenidos utilizando un autoanalizador MINDRAY de la serie BS. Los resultados pueden variar al cambiar de instrumento o al realizar el procedimiento manualmente.

-Certificado de Conformidad y Trazabilidad disponible a solicitud.

RANGOS DE REFERENCIA

Cada laboratorio debe establecer sus propios rangos de referencia en función de la población de pacientes. Los rangos de referencia que se enumeran a continuación están tomados de la bibliografía existente.

Mujeres: 0.6 – 1.2 mg/dl. Hombres: 0.7 – 1.4 mg/dl.

REFERENCIAS

- Jaffé, M. Zischr Physiol Chem. 10(391), 1886.
- Henry, R.J. Ed., Clinical Chemistry: Principles and Technics (2°Ed). Harper and Row, 1974.
- Young D.S., et al. Clin Chem.21 (286), 1975.
- Acta bioquím. clín. latinoam. vol.45 no.2 La Plata abr. /jun. 2011.